Probiotics For Pathogen Control

William W. Laegreid, DVM, PhD
USDA, ARS, U.S. Meat Animal Research Center, Clay Center, Nebraska

Nate Bauer, DVM, MS
USDA, FSIS, College Station, Texas
Incidence of zoonotic bacterial foodborne pathogens, 1997

<table>
<thead>
<tr>
<th>Zoonoses</th>
<th>Europe</th>
<th>USA</th>
<th>Australia</th>
<th>Japan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Salmonella</td>
<td>73.0</td>
<td>14.0</td>
<td>38.0</td>
<td>7.0</td>
</tr>
<tr>
<td>Campylobacter</td>
<td>30.0</td>
<td>25.0</td>
<td>100.0</td>
<td>ND</td>
</tr>
<tr>
<td>STEC infections</td>
<td>0.7</td>
<td>2.0</td>
<td>ND</td>
<td>1.7</td>
</tr>
<tr>
<td>Listeria</td>
<td>0.2</td>
<td>0.5</td>
<td>0.4</td>
<td>ND</td>
</tr>
<tr>
<td>Yersinia</td>
<td>2.0</td>
<td>1.0</td>
<td>1.5</td>
<td>ND</td>
</tr>
<tr>
<td>Brucella</td>
<td>1.0</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
</tbody>
</table>

Source: Rev Sci Tech Int Epiz, 2000 19 (1) 226-239
Preharvest control of E. coli O157:H7

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Assumption</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>modify diet</td>
<td>rehab abnormal GI tract</td>
<td>grass or hay feeding</td>
</tr>
<tr>
<td>biological control</td>
<td>natural predators</td>
<td>phage therapy, colicins</td>
</tr>
<tr>
<td>direct fed microbials</td>
<td>natural competitors</td>
<td>probiotics</td>
</tr>
<tr>
<td>stress reduction</td>
<td>normal homeostasis</td>
<td>shipping mgmt</td>
</tr>
<tr>
<td>genetic resistance</td>
<td>natural resistance</td>
<td>none</td>
</tr>
<tr>
<td>Technological</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pharmaceuticals</td>
<td>selective antimicrobials</td>
<td>neomycin, Na chlorate</td>
</tr>
<tr>
<td>vaccination</td>
<td>specific immunity</td>
<td>Finlay, Fort Dodge</td>
</tr>
<tr>
<td>genetic resistance</td>
<td>engineered resistance</td>
<td>none</td>
</tr>
</tbody>
</table>
Effect of oral neomycin (one dose; 22 mg/kg) on STEC O157 & *E coli* fecal shedding in show list steers

Keen *et al.*, unpublished data

* STEC O157 not detected in any day 3 or day 7 feces

Keen *et al.*, unpublished data
“Many studies have found that the use of antibiotics in animals poses significant risks for human health…”

GAO, April, 2004
Probiotics: potential advantages

- inexpensive
- effective single treatment possible
- decreased probability of resistance
- “natural” – regulatory and consumer acceptance
Definitions

- **Probiotics**: live microbial feed supplements which beneficially affect the host animal by improving its intestinal microbial balance (Fuller, 1989)

- **Direct fed microbials (DFM)**: synonymous with probiotics

- **Competitive exclusion (CE) cultures**: a subset of probiotics derived from indigenous intestinal microflora of healthy animals

- **Prebiotics**: nondigestible food ingredients that beneficially affect the host by selectively stimulating the growth and/or activity of one or a limited number of bacteria in the colon

- **Synbiotics**: combined application of pre- and probiotics
Characteristics of an ideal probiotic

- Non-pathogenic
- Remain functional through processing and storage
- Resist gastric acid and bile
- Persist in the gastrointestinal tract, for at least short periods
- Alter microbial populations and/or activity
Probiotics: common genera

- **Bacteria**
 - Lactobacillus
 - Bifidobacterium
 - Enterococcus
 - Bacillus
 - Escherichia
 - Proteus
 - Streptococcus

- **Fungi**
 - Saccharomyces
 - Aspergillus

Modified from Reid and Friendship, 2002
Probiotics: mechanism of action

- Competition for receptors
 - on cell surface
 - in mucus layer
 - extracellular matrix
Probiotics: mechanism of action

- Immune enhancement
 - enhanced phagocytosis
 - increased NO production
 - increased antibody production
 - cross reactive antigens
 - bacterial antigen processing
 - antiinflammatory activity
 - alteration of cytokine responses
Probiotics: mechanism of action

- Production of antimicrobial substances
 - organic acids
 - hydrogen peroxide
 - bacteriocins

- Modulation of epithelial cell gene expression and function
 - cytokines
 - prevention of enterocyte apoptosis
 - other
Probiotics: mechanism of action

- Competition for limiting nutrients
 - plausible
 - abundant *in vitro* evidence
 - evidence *in vivo* lacking
Do probiotics work?

efficacy vs. effectiveness

- **efficacy**: statistically significant effect of a treatment in a controlled setting
- **effectiveness**: significant effect of a treatment under field conditions and outcomes relevant to the problem

How do we define effectiveness for a given pathogen?
Correlation between preharvest and postharvest prevalence of EHEC O157 by day of sampling

\[r = 0.79 \]
\[p = 0.02 \]

Elder et al., PNAS 2000
Elements of intervention study evaluation

- **Design**
 - study question
 - type of study
 - study population/groups

- **Methodology**
 - what outcome is being measured
 - how is it being measured
 - magnitude of effect

- **Analysis**
 - statistical analysis
 - interpretation
Design effects on evaluation of intervention literature

Effectiveness
- Systematic reviews and meta-analysis
- Randomized, controlled, blinded (RCT) trials
- Cohort studies
- Case control studies
- Case series
- Case reports
- Animal research
- In vitro “test tube” research

Efficacy
- Clinical & laboratory studies
- Epidemiologic studies
- RCT’s and multi-study analyses

Evidence
- Strong
- Weak

EBM Class
- I
- II
- III
- IV
- V

Results
- Few positive
- Positive bias
Many instances of inappropriate use of statistics

Several instances where this leads to erroneous conclusions about the efficacy of an intervention
Efficacy?

Study 1

<table>
<thead>
<tr>
<th>Treatment</th>
<th>n</th>
<th>n positive</th>
<th>% positive (95%CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control:</td>
<td>40</td>
<td>10</td>
<td>25.0% (13.24 - 41.52)</td>
</tr>
<tr>
<td>Treatment:</td>
<td>68</td>
<td>7</td>
<td>10.3% (4.59 - 20.65)</td>
</tr>
</tbody>
</table>

p = 0.08

Study 2

<table>
<thead>
<tr>
<th>Treatment</th>
<th>n</th>
<th>n positive</th>
<th>% positive (95%CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control:</td>
<td>203</td>
<td>10</td>
<td>4.9% (2.52 - 9.14)</td>
</tr>
<tr>
<td>Treatment:</td>
<td>201</td>
<td>3</td>
<td>1.5% (0.39 - 4.65)</td>
</tr>
</tbody>
</table>

p = 0.09
Feedlot pen-to-pen variation in fecal STEC O157 shedding

- 455 show list cross bred steers in 12 adjacent feedlot pens
- Fecal census June 28-30, 1999

Fecal STEC O157 prevalence by pen

<table>
<thead>
<tr>
<th>Pen</th>
<th>123</th>
<th>124</th>
<th>125</th>
<th>126</th>
<th>127</th>
<th>128</th>
<th>129</th>
<th>130</th>
<th>131</th>
<th>132</th>
<th>133</th>
<th>134</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/68</td>
<td>0/68</td>
<td>1/32</td>
<td>1/32</td>
<td>10/41</td>
<td>23/28</td>
<td>4/28</td>
<td>1/28</td>
<td>18/28</td>
<td>3/42</td>
<td>2/30</td>
<td>0/30</td>
<td></td>
</tr>
<tr>
<td>1.5%</td>
<td>0.0%</td>
<td>3.1%</td>
<td>3.1%</td>
<td>24.4%</td>
<td>82.1%</td>
<td>14.3%</td>
<td>3.6%</td>
<td>64.3%</td>
<td>7.1%</td>
<td>6.7%</td>
<td>0.0%</td>
<td></td>
</tr>
</tbody>
</table>

- = water source
- = 2 lowest prev pens
- = 2 highest prev pens

Range: 0.0% to 82.1%; **Mean:** 17.5%;
Median: 5.1%; **Std dev:** 27.2%

Overall prevalence

64 /455 = 14.1% (11.1-17.7)

Pen prevalence

10/12 = 83.3% (50.9-97.1)
Effect of clustering by pen on analysis of treatment effects

If we randomly assign *pens* to treatment or control groups, ~80% of the time there will be a statistically significant (p<0.05) difference in pooled prevalence attributable to treatment.

Only 5% of the time will there be an apparent effect if *individuals* are randomly assigned to treatment or control groups.

<table>
<thead>
<tr>
<th>Pen</th>
<th>1/68</th>
<th>0/68</th>
<th>1/32</th>
<th>1/32</th>
<th>10/41</th>
<th>23/28</th>
<th>4/28</th>
<th>1/28</th>
<th>18/28</th>
<th>3/42</th>
<th>2/30</th>
<th>0/30</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.5%</td>
<td>0.0%</td>
<td>3.1%</td>
<td>3.1%</td>
<td>24.4%</td>
<td>82.1%</td>
<td>14.3%</td>
<td>3.6%</td>
<td>64.3%</td>
<td>7.1%</td>
<td>6.7%</td>
<td>0.0%</td>
</tr>
</tbody>
</table>

^ = control

<table>
<thead>
<tr>
<th>Iteration</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>control</td>
<td>18.5</td>
<td>19.9</td>
<td>16.2</td>
<td>28.9</td>
<td>15.4</td>
</tr>
<tr>
<td>treatment</td>
<td>10.9</td>
<td>9.4</td>
<td>11.9</td>
<td>2.7</td>
<td>13.1</td>
</tr>
</tbody>
</table>

p<

0.03* 0.01* 0.24 0.01* 0.89
Effect of select probiotics on *Salmonella enterica* Enteritidis prevalence in chickens

<table>
<thead>
<tr>
<th>Study type</th>
<th>Probiotic genera</th>
<th>Control</th>
<th>Probiotic</th>
<th>Max. effect (%)</th>
<th>p-value</th>
<th>n</th>
<th>n x effect</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>III</td>
<td>Avigard</td>
<td>87</td>
<td>0</td>
<td>100</td>
<td><0.05</td>
<td>*</td>
<td>*</td>
<td>Davies, 2003</td>
</tr>
<tr>
<td>V</td>
<td>Lactobacillus</td>
<td>100</td>
<td>100</td>
<td>0</td>
<td>>0.05</td>
<td>5</td>
<td>0</td>
<td>LaRagione, 2004</td>
</tr>
<tr>
<td>V</td>
<td>Undefined CE</td>
<td>100</td>
<td>0</td>
<td>100</td>
<td><0.05</td>
<td>50</td>
<td>50</td>
<td>Andreatti-Filho, 2003</td>
</tr>
<tr>
<td>V</td>
<td>Avigard</td>
<td>75</td>
<td>10</td>
<td>87</td>
<td><0.05</td>
<td>10</td>
<td>7</td>
<td>Seo, 2000</td>
</tr>
<tr>
<td>V</td>
<td>Broilact</td>
<td>40</td>
<td>10</td>
<td>75</td>
<td>>0.05</td>
<td>10</td>
<td>3</td>
<td>Fukata, 1999</td>
</tr>
</tbody>
</table>

* *not calculable from the data available*
Effect of select probiotics on fecal prevalence of *E. coli* O157:H7 in cattle

<table>
<thead>
<tr>
<th>Study type</th>
<th>Probiotic genera</th>
<th>Control</th>
<th>Probiotic</th>
<th>Max. effect</th>
<th>p-value</th>
<th>n</th>
<th>n x effect</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>III</td>
<td>Lactobacillus, Propionibacterium</td>
<td>28</td>
<td>14</td>
<td>50.9</td>
<td>>0.09</td>
<td>60</td>
<td>8</td>
<td>Elam, 2003</td>
</tr>
<tr>
<td>III</td>
<td>Lactobacillus</td>
<td>65</td>
<td>45</td>
<td>30.8</td>
<td><0.04</td>
<td>60</td>
<td>12</td>
<td>Brashears, 2003</td>
</tr>
<tr>
<td>V</td>
<td>Escherichia</td>
<td>67</td>
<td>0</td>
<td>100</td>
<td><0.05</td>
<td>6</td>
<td>6</td>
<td>Tkalcic, 2003</td>
</tr>
<tr>
<td>V</td>
<td>Escherichia</td>
<td>57</td>
<td>29</td>
<td>49.1</td>
<td>>0.05</td>
<td>7</td>
<td>2</td>
<td>Zhao, 2003</td>
</tr>
</tbody>
</table>
Do probiotics work? … Possibly

There is a general basis for efficacy of probiotics for reduction of carriage of some food-borne pathogens.

Well-designed, peer-reviewed clinical/field trials are required before probiotics should be considered effective components of an overall pathogen reduction program.