SALMONELLA
INTERVENTIONS FOR SWINE

James. D. McKean, DVM, JD**
Iowa State University
Ames, Iowa
x2mckean@iastate.edu
** and colleagues – M Rostagno, S Hurd, A O’Connor, et al.
The problem...

- F Subclinical infections/carriers
 - f Food safety problem
 - f Risk for pork contamination

F Proposed solution:
 - f Reduction of meat contamination by reducing/eliminating contaminants at the pre-harvest level (on-farm);

Is that an appropriate strategy??
Intervention Considerations

- Epidemiology and ecology of hazard
 - source(s) for contaminant
 - ability to multiply under handling conditions

- Potentials for “downstream” contamination

- Contamination attribution – significance

- Control measures – feasibility/costs

- Control measures – implementation
 - successful implementation – incentive/penalty
 - monitoring for action completion/efficacy
Salmonella Intervention Considerations

- ~2,400 serovars with wide range of hosts
- Exposure levels variable for carriage
- Survival in environment for +/- 6 years
- Infections/carriage - often indistinguishable
- Infection may result in intermittent shedding
- Detection methods – relatively insensitive
 - culture – 30-70% sensitive
 - antibodies – shedding vs. response, herd vs. individual
 - PCR – live vs. dead, test costs
Salmonella Intervention
Considerations

First principle = stop contamination at farm
- practicality of interventions
- attribution of risk evaluations
- “downstream” recontamination

On-farm Salmonella controls
- most experiences developed in Europe
- measures for success in dispute (??)
- current focus on feeds/feeding practices
On-farm interventions – hygiene based

- hand washing prior to entry to swine facility*
- toilet facilities on site
- boot and outer clothing changes prior to entry*
- reduced human entry to site
- cleaning/disinfection – equivocal results
- All-in/All-out – equivocal results*
- *additive effects from multiple applications
- pen sanitation may not influence culture results
Salmonella Intervention
Considerations

- On-farm interventions – feed based
 - feed as contaminant source
 - different serovars present in feed and animals
 - common environmental contaminant
 - presence/absence of infective dose – $>10^3$??
 - variable effects from processing
 - pellets vs. mash
 - particle sizes – larger are protective
 - wet vs. dry – fermented vs. non-fermented
Salmonella Intervention Considerations

- Acidification of feeds or water
 - “natural” — fermentation of liquid feeds
 - addition of whey as major feed ingredient
 - organic and inorganic acids investigated
 - *acid de jour* = benzoic acid alone or in combination
 - apply in either feed or water

- Miscellaneous observations
 - stocking density — equivocal results
 - seasonality — winter/spring — higher ??
 - Intergenerational transfer — break with early weaning ??
Good Manufacturing Practices –
On-farm activities - Danish

▪ Eliminate carrier sow herds
 – S. typhimurium specific??

▪ Acidification of feed/water
 – expenses in feed/water and equipment wear

▪ Coarse ground feed vs. pellets/fine grind

▪ Farm level classification
 – reduce abattoir and transport contamination??
 – limit to continued reductions = interventions
NOW FOR THE REST OF THE STORY!!
Potential Sources of Contamination on Pork Carcasses
--Farm to Cooler Continuum--

On-farm Infection
Carcass-associated Lymph Nodes (farm sourced)

Transport & Lairage
Cecum and Gut-associated Lymph Nodes

Pre-slaughter
Dressing Process
Carcass Swab (dressing sourced)
Carcass Contamination

Antemortem → Postmortem
Good Manufacturing Practices – Salmonella

- Abattoirs
 - Processing controls – HACCP
 - Antemortem pens
 - Routine recontamination
 - Rapid infection from environment
 - May require complete isolation - ??
Acute (2hr) infection is feasible!

<table>
<thead>
<tr>
<th>Treatment</th>
<th>mandibular lymph node</th>
<th>ileocecal lymph node</th>
<th>sublingual lymph node</th>
<th>cecal content</th>
<th>ileal sample and content</th>
<th>post-challenge fecal</th>
<th>Positive on any tissue</th>
</tr>
</thead>
<tbody>
<tr>
<td>control</td>
<td>0/5</td>
<td>0/5</td>
<td>0/5</td>
<td>0/5</td>
<td>0/5</td>
<td>0/5</td>
<td>0/5</td>
</tr>
<tr>
<td>2 hour exposure</td>
<td>0/10</td>
<td>2/10(^{b})</td>
<td>0/10</td>
<td>3/10</td>
<td>7/10</td>
<td>5/10</td>
<td>8/10</td>
</tr>
<tr>
<td>3 hour exposure</td>
<td>1/10(^{a})</td>
<td>0/10</td>
<td>0/10</td>
<td>2/10</td>
<td>3/10</td>
<td>5/10</td>
<td>6/10</td>
</tr>
<tr>
<td>6 hour exposure</td>
<td>0/5</td>
<td>1/5(^{c})</td>
<td>1/5(^{d})</td>
<td>5/5</td>
<td>4/5</td>
<td>2/4</td>
<td>5/5</td>
</tr>
<tr>
<td>shedder</td>
<td>5/10</td>
<td>10/10</td>
<td>2/10(^{e})</td>
<td>10/10</td>
<td>10/10</td>
<td>10/10</td>
<td>10/10</td>
</tr>
</tbody>
</table>

\(^{a}\) enviromental dose equaled 4.4 X 10\(^{3}\) cfu per gram

\(^{b}\) enviromental doses equaled 1.5 X 10\(^{3}\) and 4.4 X 10\(^{3}\) cfu per gram

\(^{c}\) enviromental dose equaled 1.5 X 10\(^{3}\) cfu per gram

\(^{d}\) enviromental dose equaled and 4.5 X 10\(^{2}\) cfu per gram

\(^{e}\) inoculation dose equaled 9.0 X10\(^{8}\) cfu
Serotypes varied by week

<table>
<thead>
<tr>
<th>Serotype</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agona</td>
<td>26</td>
<td>1</td>
<td>4</td>
<td></td>
<td>5</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>39</td>
</tr>
<tr>
<td>Anatum</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>24</td>
</tr>
<tr>
<td>Derby</td>
<td>1</td>
<td>24</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>6</td>
<td>52</td>
</tr>
<tr>
<td>Manhattan</td>
<td>1</td>
<td></td>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>13</td>
<td></td>
<td></td>
<td>17</td>
</tr>
<tr>
<td>T var copen</td>
<td></td>
<td>12</td>
<td></td>
<td>1</td>
<td>1</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>17</td>
</tr>
<tr>
<td>Typhimurium²</td>
<td></td>
<td></td>
<td>31</td>
<td></td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td></td>
<td></td>
<td>37</td>
</tr>
<tr>
<td>Reading</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>Uganda</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Total typable³</td>
<td>49</td>
<td>24</td>
<td>18</td>
<td>12</td>
<td>15</td>
<td>39</td>
<td>9</td>
<td>36</td>
<td>20</td>
<td>22</td>
<td>244</td>
</tr>
</tbody>
</table>
Summary: Increased fecal isolation, farm through slaughter, regardless of stress

- Farm fecal
 - 4.1%
 - 2.8%
 - n=134

- Colon contents at slaughter
 - 59.4%
 - 44.4%
 - n=136

18 hr. in clean barn
Diversity of serotypes and number isolated at each sampling site by sampling period - sows

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Farm</td>
<td>Infantis(1)</td>
<td>--------------</td>
<td>Derby(1)</td>
<td>Derby(1)</td>
<td>Derby(1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Infantis(1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Collection Point</td>
<td>--------------</td>
<td>--------------</td>
<td>--------------</td>
<td>Derby(1)</td>
<td>Derby(2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abattoir¹</td>
<td>Derby(1)</td>
<td>Derby(5)</td>
<td>Derby(50)</td>
<td>Derby(11)</td>
<td>Derby(29)</td>
</tr>
<tr>
<td>Manhattan(2)</td>
<td>Heidelberg(7)</td>
<td>Manhattan(1)</td>
<td>Manhattan(1)</td>
<td>Manhattan(1)</td>
<td>Manhattan(1)</td>
</tr>
<tr>
<td>Give(2)</td>
<td>Infantis(6)</td>
<td>Heidelberg(1)</td>
<td>Typhimurium(3)</td>
<td>Ohio(5)</td>
<td>Typhimurium(2)</td>
</tr>
<tr>
<td>London(1)</td>
<td>Anatum(3)</td>
<td>Uganda(3)</td>
<td>Muenster(1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Uganda(2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Worthington(2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Newport(1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

¹ Consisted of colon contents, ileocecal lymph node, cecal contents, ventral thoracic, subiliac lymph nodes and right and left pre and postwash carcass swabs
What is the farm level problem??
SALMONELLA CONCERNS BY SEROTYPE

<table>
<thead>
<tr>
<th>HUMAN %</th>
<th>SWINE %</th>
</tr>
</thead>
<tbody>
<tr>
<td>TYPHIM.</td>
<td>TYPHIM.</td>
</tr>
<tr>
<td>ENTERID.</td>
<td>ENTERID.</td>
</tr>
<tr>
<td>HEIDEL.</td>
<td>HEIDEL.</td>
</tr>
<tr>
<td>NEWPORT</td>
<td>NEWPORT</td>
</tr>
<tr>
<td>HADAR</td>
<td>HADAR</td>
</tr>
<tr>
<td>DERBY</td>
<td>DERBY</td>
</tr>
<tr>
<td>OTHERS</td>
<td>OTHERS</td>
</tr>
<tr>
<td>22.6</td>
<td>20.4</td>
</tr>
<tr>
<td>22.0</td>
<td>0.0</td>
</tr>
<tr>
<td>6.8</td>
<td>7.0</td>
</tr>
<tr>
<td>4.6</td>
<td>0.0</td>
</tr>
<tr>
<td>3.6</td>
<td>1.1</td>
</tr>
<tr>
<td>0.004</td>
<td>28.0</td>
</tr>
<tr>
<td>38.6</td>
<td>43.0</td>
</tr>
</tbody>
</table>
Good Manufacturing Practices – On-farm activities - ??

- All in/All out
- Age segregation/intergenerational transfer
- Pen density/group sizes
- Pen sanitation
- Bird proofing/wildlife exposures
- Feed contamination/processing
- Human contact/sanitation
How is success measured??

“Clean up” farms and **system** will be safer
- limitations on measurement – culture/ELISA

Reduce contamination levels/prevalence
- acceptable levels, if not zero??
- where to measure for farm level effect ??

Rationalize serotypes to human health
- Is derby = typhimurium = agona = infantis??
- link between farm and pork products??
Bacteriological (fecal) Salmonella prevalence in finishing pigs over time

Prevalence (%) vs. Sampling

Sampling: 1 2 3 4 5 6
Prevalence (%): 0 10 20 30 40 50

Lines:
- A
- B
- C
- D
- E
- F
Serological (meat juice) Salmonella prevalence in finishing pigs over time

Prevalence (%) vs. Sampling
Table 1 - Bacteriological (fecal samples) and serological (meat juice samples) *S. enterica* prevalence in finishing pig from multiple production systems

<table>
<thead>
<tr>
<th>Production System</th>
<th>Bacteriological Prevalence (Min.-Max.)</th>
<th>Serological Prevalence (Min.-Max.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>9.4% (\text{A,a} (0 - 26.7%))</td>
<td>39% (\text{A,b} (0 - 84%))</td>
</tr>
<tr>
<td>B</td>
<td>6.7% (\text{A,a} (0 - 13.3%))</td>
<td>11.3% (\text{A,a} (0 - 26%))</td>
</tr>
<tr>
<td>C</td>
<td>22.8% (\text{A,a} (6.7 - 40%))</td>
<td>55.7% (\text{A,b} (14 - 100%))</td>
</tr>
<tr>
<td>D</td>
<td>9.4% (\text{A,a} (0 - 46.7%))</td>
<td>51.8% (\text{A,b} (4 - 78%))</td>
</tr>
<tr>
<td>E</td>
<td>15% (\text{A,a} (0 - 36.7%))</td>
<td>20.4% (\text{A,a} (2 - 60%))</td>
</tr>
<tr>
<td>F</td>
<td>13.9% (\text{A,a} (0 - 43.3%))</td>
<td>30% (\text{A,a} (8 - 72%))</td>
</tr>
<tr>
<td>Overall</td>
<td>12.9% (\text{a} (0 - 46.7%))</td>
<td>35.4% (\text{b} (0 - 100%))</td>
</tr>
</tbody>
</table>

*A,B: Comparison within columns (p<0.05)
a,b: Comparison within rows (p<0.05)
Possible reasons for the wide variation found within production sites:

1- Clusters;

2- Intermittent shedding;

3- Evolution and resolution of infection epidemics.
Where should GMPs be applied??

- On-farm
- In transport/concentration
- At abattoir
 - ante-mortem pens management??
 - HACCP upgrades
- Need more information??
THE ALL AMERICAN PIG

THANK YOU FOR YOUR PARTICIPATION

QUESTIONS?