Control of *Listeria monocytogenes* on pre-cooked pork chops by irradiation combined with modified atmosphere packaging

L. Kudra*, J. Sebranek, J. Dickson, A. Mendonca, K. Prusa, E. Larson, J. Cordray; Iowa State University, Ames, IA 50011

Abstract

The efficacy of controlling *Listeria monocytogenes* in pre-cooked pork chops by irradiation combined with high CO$_2$ (100%) modified atmosphere packaging (MAP) was investigated in this study. Enhanced pork loin (injected with water, salt, phosphate and potassium lactate) were purchased from a local manufacturer, cooked to internal temperature 72 °C, and sliced to 1.5 cm thick chops. Chops were inoculated with a five strain cocktail of *Listeria monocytogenes* at a concentration of 5 log cfu/gram. Chops were packaged individually with vacuum or MAP, and irradiated at 0 (control), 1.0, 1.5 or 2.0 kGy. The radiation sensitivity of this microorganism was observed to be similar in vacuum or MAP packaging. The D10-value was 0.59 ± 0.02 kGy in vacuum and 0.57 ± 0.02 kGy in MAP packaging. During temperature abuse (at room temperature for 48 hours), the population of this bacterium increased significantly on both irradiated or non-irradiated pork chops in vacuum packaging, but only on non-irradiated chops in MAP packaging. The lag phase of *L. monocytogenes* was 7-9 weeks in vacuum packaging, and at least 12 weeks in MAP packaging. Very little lipid oxidation was detected in the irradiated product from either vacuum or MAP packages. Neither irradiation nor packaging affected the pH of the product. Irradiation-induced redness was observed in precooked pork chops in vacuum packages, but not in MAP packages. Pre-cooked pork chops from MAP packages were less firm and juicier than from vacuum packages. Irradiated off-odor was detected in the product from both vacuum and MAP packages.

Introduction

Product recalls of ready-to-eat (RTE) meat products due to contamination with *L. monocytogenes* have not only caused tremendous economic loss in the meat industry, but also indicate that this foodborne pathogen is still a potential risk for public health. While progress has been made, additional control measures are needed to eliminate this pathogen from RTE meats. Irradiation and modified atmosphere packaging (MAP) have been used for the control of pathogenic bacteria in many food meat products (Olson, 1995; Rao & Sachindra, 2002). Many reports have shown that MAP with high CO$_2$ (60-100%) is more effective than low CO$_2$ (20-30%) for control of spoilage bacteria in fresh meats, and meat shelf life was longer in MAP with high CO$_2$. (Tewari et al., 1999). MAP with high CO$_2$ also has the advantage of excluding oxygen from packages and preventing lipid oxidation when meat product was treated with irradiation (Grant and Patterson, 1991). Few studies have been done on the radiation sensitivity of *Listeria monocytogenes* on RTE meat products packaged in high CO$_2$ MAP, or on the survival and recovery of this foodborne pathogen in high CO$_2$ MAP at refrigeration temperature, or with temperature abuse following irradiation treatments.

Objective

The objective of this study was to test the hypothesis that irradiation combined with high CO$_2$, MAP (100%) is more effective than irradiation with vacuum packaging for reducing *L. monocytogenes* on pre-cooked pork chops, and for inhibiting the growth of survivors at 2-4 °C or with temperature abuse. Quality and sensory evaluations were also included to assess the quality implications of the combined treatments.

Materials and Methods

- **Preparation of bacterial cultures**
 - Five strains of *L. monocytogenes*
 - Medium: TSA+YE
 - Incubation: 35 °C for 24 hr
- Inoculation and packaging
 - Inoculum: combined five strains in 0.1% peptone water (7 log cfu/ml)
 - Pork chops: 1.5 cm thick slices, 100 grams
 - Inoculation concentration: 5 log cfu/g
 - Packaging: vacuum or high CO$_2$ MAP for single chops
- Irradiation
 - Electron beam (linear accelerated)
 - Target doses for inoculated samples: 0 (control), 1.0, 1.5, 2.0 kGy
 - Target doses for uninoculated samples: 0 (control), 1.5, 2.0 kGy
- Enumeration
 - Medium for plating: MOX, incubated at 35 ºC for 48 hr
- Irradiation-induced redness
 - Medium for plating: MOX, incubated at 35 ºC for 48 hr
- **Quality and sensory evaluation**
 - Ten trained panelists; 15 unit numerical line
 - Unheated samples: color and aroma
 - Heated samples: aroma, texture and flavor

Results

1. **Radiation sensitivity:**
 - Mean values within the same row of the same packaging type with different superscripts are statistically significantly different (p <0.05).

2. **Growth during storage:**
 - Significant growth after 7-9 week (p<0.05)
 - Pre-cooked pork chops
 - MAP
 - Irradiated: 0, 1.0, 1.5 kGy
 - Non-irradiated: 0, 1.0, 1.5 kGy

3. **The growth during temperature abuse:**
 - Table 2
 - Growth of *L. monocytogenes* (log cfu/gram) on irradiated cooked pork chops at 20°C for 48 hr.
 - Control vs. treatments: *L. monocytogenes* growth significantly on both irradiated or non-irradiated pork chops in vacuum packages, but only on non-irradiated chops in MAP packages. The lag phase of *L. monocytogenes* was 7-9 weeks in vacuum packaging, and at least 12 weeks in MAP packaging. During temperature abuse (at room temperature for 48 hours), the population of this bacterium increased significantly on both irradiated or non-irradiated pork chops in vacuum packaging, but only on non-irradiated chops in MAP packaging. The D10-value was 0.59 ± 0.02 kGy in vacuum and 0.57 ± 0.02 kGy in MAP packaging. During temperature abuse (at room temperature for 48 hours), the population of this bacterium increased significantly on both irradiated or non-irradiated pork chops in vacuum packaging, but only on non-irradiated chops in MAP packages. The lag phase of *L. monocytogenes* was 7-9 weeks in vacuum packaging, and at least 12 weeks in MAP packaging. Very little lipid oxidation was detected in the irradiated product from either vacuum or MAP packages. Neither irradiation nor packaging affected the pH of the product. Irradiation-induced redness was observed in precooked pork chops in vacuum packages, but not in MAP packages. Pre-cooked pork chops from MAP packages were less firm and juicier than from vacuum packages. Irradiated off-odor was detected in the product from both vacuum and MAP packages.

4. **Quality and sensory evaluation:**
 - Table 4
 - LS means for sensory attributes of heated cooked pork chops packaged using different techniques

Conclusion

The results of this study showed that irradiation combined with high CO$_2$ atmosphere packaging was similar to irradiation combined with vacuum packaging for elimination of *Listeria monocytogenes* on pre-cooked pork chops. Irradiation combined with high CO$_2$ MAP was more effective than vacuum packaging for control of the growth of this pathogen during refrigerated storage or temperature abuse. High CO$_2$ MAP did not result in the redness often induced by irradiation in pork. However, strategies are needed to mitigate irradiated off-odor that occurred in both packaging types, and sourness in high CO$_2$ MAP.

Literature Cited

Acknowledgements

This research was supported by the United States Department of Agriculture Cooperative State Research, Education, and Extension Service (Nehemiah Integrated Food Safety Initiative), under Grant No. 2003-51110-02077.