PRACTICAL APPLICATIONS TO IMPROVE FRESH MEAT COLOR

Brad Kim, Ph.D.
Assistant Professor Meat Science & Muscle Biology,
Department of Animal Sciences, Purdue University
Consumers expect high quality meat, which should have desirable flavor, tenderness, and juiciness.

MEAT QUALITY

Consumers judge freshness and wholesomeness of meat.

First factor

Palatability
- affects consumers’ repeated purchase of meat.
PRACTICAL APPLICATIONS TO IMPROVE FRESH MEAT COLOR

1. POST - HARVEST FACTORS & STRATEGIES

2. PRE - HARVEST FACTORS & STRATEGIES
1. POST-HARVEST FACTORS

1. TEMPERATURE
High pre-rigor temperature (42°C) significantly reduced the retail color display life of chilled lamb loins.

Effects of electrical stimulation (ES) and different pre-rigor temperatures (15 and 38°C) on L* (lightness) values of beef *M. longissimus*.

(Kim et al., 2014)
INFLUENCE OF CARCASS CHILLING TEMPERATURE ON MEAT COLOR

SSM: Fast chilling

DSM: Slow chilling

Graphs:
- **Temperature (°C) vs. Post-mortem Hour (h):**
 - DSM in red
 - SSM in blue

- **pH vs. Time postmortem (h):**
 - DSM in red
 - SSM in blue
HIGH TEMPERATURE & RAPID pH DECLINE CONDITIONS RESULT IN MYOGLOBIN DENATURATION

Two-toned color development

High Temp & fast pH decline conditions

Protein denaturation: myoglobin denaturation

SSM

DSM
MORE DISCOLORATION OF DSM DURING RETAIL DISPLAY

<table>
<thead>
<tr>
<th></th>
<th>DSM</th>
<th>SSM</th>
<th>SEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>L*</td>
<td>46.5<sup>a</sup></td>
<td>40.3<sup>b</sup></td>
<td>0.9</td>
</tr>
<tr>
<td>a*</td>
<td>32.1<sup>a</sup></td>
<td>28.0<sup>b</sup></td>
<td>0.5</td>
</tr>
<tr>
<td>b*</td>
<td>24.4<sup>a</sup></td>
<td>19.6<sup>b</sup></td>
<td>0.5</td>
</tr>
<tr>
<td>Hue</td>
<td>37.1<sup>a</sup></td>
<td>34.9<sup>b</sup></td>
<td>0.3</td>
</tr>
</tbody>
</table>

Means in a row with different subscripts (a-b) are different (P < 0.05)

(Kim et al., 2010)
LESS EXTENT OF MU-CALPAIN AUTOLYSIS AND PROTEOLYSIS IN DSM

Kim et al. (2010b) Meat Sci. 86: 883-887
DSM HAD GREATER STAR PROBE VALUES (TOUGHER) THAN SSM

Means having different letters within each day are different ($p < 0.05$).
Implementation of efficient chilling techniques to prevent protein denaturation should improve consistency and quality of fresh beef cuts.
Increase in the storage temperature from the ideal storage temperature of -1.5°C to 2°C significantly decreased the color stability of lamb loins.

Long term T abuse: 2°C for 7wks
Short term T abuse: -1.5°C for 6 wks + 1 wk at 2°C.

(Rosenvold & Wiklund, 2011)
IMPACT OF ELEVATED DISPLAY TEMPERATURES FOR A SHORT-TIME PERIOD ON MEAT COLOR

A short-term temperature abuse for 6 hours resulted in about 17% reduction in a^* (redness) values of beef muscle.

(Kim, 2014)
I. POST- HARVEST FACTORS

1. TEMPERATURE

2. AGEING, FREEZING & THAWING

(Photo from Cryovac Inc.)
MEAT QUALITY CHANGE DURING CHILLED-STORAGE

- Substantial meat quality improvement (tenderness, juiciness and/or flavour) through endogenous enzymatic protein degradation.

Long-term chilled storage during shipping (6 to 8 weeks)
EFFECT OF CHILLING STORAGE PERIODS ON COLOR STABILITY OF LAMB LOINS

Meat color stability decreases with increasing chilling storage periods.

Significant economical issue! $$$

(Kim et al. Unpublished data)
CONVENTIONAL IDEAS ON FRESH VS. FROZEN MEAT

Consumer perception

<table>
<thead>
<tr>
<th></th>
<th>High Quality</th>
<th>Tender</th>
<th>Juicy</th>
<th>Prep Variety</th>
<th>Flavor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fresh</td>
<td>67%</td>
<td>62%</td>
<td>62%</td>
<td>61%</td>
<td>65%</td>
</tr>
<tr>
<td>Frozen</td>
<td>22%</td>
<td>24%</td>
<td>20%</td>
<td>34%</td>
<td>25%</td>
</tr>
</tbody>
</table>

Meat quality:
Fresh (chilled never frozen) > Frozen
EFFECT OF AGEING/FREEZING ON WATER-HOLDING CAPACITY (WHC) OF LAMB LOINS

Ageing/freezing significantly improved WHC of loins

abc Different letters indicate significant difference (P < 0.05)

(Kim et al. 2012)
EFFECT OF AGEING/FREEZING ON SHEAR FORCE VALUES OF LAMB LOINS

Ageing-then-freezing significantly improved tenderness of loins

Shear force (KgF)

Storage Treatment

A1wk A3wk A9wk A3F6wk F9wk

abc Different letters indicate significant difference (P < 0.05)

(Kim et al. 2012)
Consumer evaluation of cooked meat after 9 wk storage

<table>
<thead>
<tr>
<th>Specie / muscle</th>
<th>Chilled</th>
<th>Aged-frozen</th>
<th>Statistical Significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preference</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lamb</td>
<td>LD</td>
<td>53%</td>
<td>47%</td>
</tr>
<tr>
<td>Overall acceptability*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beef</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SM</td>
<td>7.1</td>
<td>7.3</td>
<td>NS</td>
</tr>
<tr>
<td>LD</td>
<td>7.8</td>
<td>7.1</td>
<td>NS</td>
</tr>
<tr>
<td>Venison</td>
<td>LD</td>
<td>9.7</td>
<td>9.6</td>
</tr>
</tbody>
</table>

*Unstructured continuous line scale with 0= dislike extremely and 15 = like extremely was used for beef and venison consumer sensory evaluation

(Wiklund et al, 2009; Wiklund et al. 2010)
EFFECT OF AGED/FROZEN ON COLOUR STABILITY OF LAMB LOINS

Aged/frozen improved color stability of loins during retail display.

Discoloration scores

Display days

(F9)

(A2F7)

(A3F6)

(A9)

(Kim et al. 2013)
I. POST- HARVEST FACTORS

1. TEMPERATURE

2. AGEING, FREEZING & THAWING

3. PACKAGING
COLOR TRIANGLE

Vacuum pack: very stable (weeks)

MMb

Oxidation

OMb

Overwrap-PVC: short colour life (2-3 days)
HIGH-OXYGEN MODIFIED ATMOSPHERE PACKAGING (HIOX-MAP) SYSTEM

HiOx-MAP (80% O_2 + 20% CO_2) allows
1) more oxygen to penetrate into meat, consequently forming a higher percentage of oxymyoglobin and a brighter cherry red meat colour

(Photo courtesy of Dr. D.H. Kropf, Kansas State University)
HIGH-OXYGEN MODIFIED ATMOSPHERE PACKAGING (HIOX-MAP) SYSTEM

HiOx-MAP (80% O₂ + 20% CO₂) allows
1) longer color shelf-life
2) CO₂ in the package preventing microbial growth
 - High solubility in both muscle and fat tissue
 - At ↓temp, ↑solubility of CO₂, hence is more effective in retarding microbial growth (10 to 14 days).
HiOx-MAP (80% O₂ + 20% CO₂) are likely to increase the incidence of oxidative changes in the meat, and thus it may negatively affect meat quality characteristics.
EFFECTS OF HIOX-MAP ON MEAT QUALITY

Muscle selection: LD, SM, AD (N=10) @ 1 d p.m.

Trim & cut a steak (2.54 cm)

HiOx-MAP

VAC

Displayed for 9d at 1°C

(Kim et al. 2010)
Influence of different packaging types on surface redness

Means having different letters are different ($p < 0.05$).

SEM = 1.11

(Kim et al. 2010)
HIOX-MAP INCREASED LIPID OXIDATION OF BEEF STEAKS

Means with different letters are different ($p < 0.05$). (Kim et al. 2010)
HIOX-MAP INCREASED OFF-FLAVOR OF BEEF STEAKS AFTER DISPLAY FOR 9D

\[\text{Off-flavor} \]

\[\text{MAP} \]

\[\text{VAC} \]

\[\text{SEM} = 0.06 \]

\[^{ab} \text{Means with different letters are different (} p < 0.05 \text{).} \]

(Kim et al. 2010)
HIOX-MAP DECREASED MEAT TENDERNESS

Sensory Tenderness

![Bar chart showing sensory tenderness for LL, SM, and AD muscles. The chart indicates that MAP samples have higher tenderness compared to VAC samples.]

Sensory Chewiness

![Bar chart showing sensory chewiness for LL, SM, and AD muscles. The chart indicates that MAP samples have lower chewiness compared to VAC samples.]

A. SDS-PAGE

- CL-MHC
- MHC

B. Western blot of X-linked MHC

- LV D1
- LM D1
- LV D9
- LM D9

(SEM = 0.68 for Sensory Tenderness, SEM = 0.33 for Sensory Chewiness)

(Kim et al. 2010)
2D-DIAGONAL-PAGE TO DETERMINE ANY INTERMOLECULAR X-LINKED PROTEIN

First dimension
SDS-PAGE

Non-reducing condition

Reducing condition

Second-D SDS-PAGE

VAC
MAP

Non-reducing condition

Reducing condition

Intermolecular disulphide bonds
HIOX-MAP RESULTED IN PROTEIN POLYMERIZATION

Cross-linking of MHC with Titin?

(Kim et al. 2010)
PREMATURE BROWNING (PMB):
Mb denatures at a temp. lower than necessary to destroy pathogens (71°C).

Could be a major food safety concern!!!

(Photo courtesy of Curwood, Bemis Company Inc.)

(Photos courtesy of Dr. Cornforth, Utah State Univ.)
IMPACTS OF HIOX-MAP ON MEAT QUALITY

Oxidative conditions

Myoglobin oxidation

Lipid oxidation

Protein oxidation: protein polymerization formation

Premature browning

Color

Flavor

Juiciness

Tenderness
THE KEY IS TO PREVENT OXIDATION – O2

1) Different packaging condition (e.g. Ultra LoOX-MAP or CO-MAP)
- Ultra LoOx-MAP substantially minimized an incidence of oxidation during retail display and thus maintained lamb meat quality attributes.

(Kim et al. 2013)
Ultra LoOx-MAP substantially minimized oxidation during retail display time thus improved color/Flavour/Aroma of long-term stored meat.

(Kim et al. 2013)
CO-MAP

- CO-MAP contains 0.4%CO/30%CO2/69.6%N2 with oxygen impermeable film.
- FDA approved CO-MAP (0.4%; GRAS for retail packages)

Beef patties packaged in either PVC or CO-MAP (0.4% CO) displayed for 7 days at 2°C.

A false perception that CO-MAP can mask the discoloration of spoiled meat due to bacterial growth.

Use/Freeze by Date!

(Dr. Cornforth presentation at MIRC, 2007)
FRESH CASE® SYSTEM – NITRITE CONTAINING FILM

A

- Outer layer
- Barrier
- Sealant layer

Package Interior (Meat Product Surface)

Invisible Sodium Nitrite Crystals

B

CON
NO2

Siegel (2010)
ANOTHER WAY IS TO IMPROVE MRA

1) Different packaging condition (e.g. Ultra LoOX-MAP or CO-MAP)
2) Injection enhancement
LACTATE INJECTION ENHANCEMENT

• Commonly used in fresh and processed meat products with phosphate as an antioxidant – Value added products

• Lactate ion decreases oxidation by scavenging free radicals such as superoxide anion (O$_2^-$) and ·OH.

(Groussard et al., 2004)
1) Strong antioxidant capacity (Kim et al., 2009)
2) Increased MRA by replenishment of NADH through lactate-LDH coupling reaction (Kim et al., 2006)
Lactate/phosphate enhancement decreased lipid oxidation of beef steaks packaged in HiOx-MAP

Means having different letters are different ($p < 0.05$).

(Kim et al. 2010)
Lactate/phosphate enhancement improved tenderness values for LD and SM in HIOX-MAP

Means having different letters are different ($p < 0.05$).

(Kim et al. 2010)
II. PRE-HARVEST FACTORS

1. FEEDING EFFECT
14 week old lambs (n =124) were randomly allocated to 7 different forage treatments for 12 weeks until slaughter: (Clover 12wk, Clover 11wk, Clover 9wk, Lucerne, Chicory, Plantain and Ryegrass)

Paired loins from each carcass stored for 9 weeks @ -1.5°C

Packaged in either HiOx-MAP (80% O2/20% CO2) or LowOx-MAP (20% CO2/80% N2)/displayed for 7 days

To test,
1) Forage effect
2) Packaging effect

-Color stability: Minolta/Sensory color panel
-pH
-TBARS
-Sensory eval.

(Kim et al. 2013)
EFFECTS OF FORAGE TYPES ON DISCOLORATION OF LONG-TERM CHILLED LOINS DURING DISPLAY UNDER HIOX-MAP

(Kim et al. 2013)
Acceptable color was maintained after 7d display under LoOx-MAP

(Kim et al. 2013)
II. PRE-HARVEST FACTORS

1. FEEDING EFFECT

2. GENDER/CASTRATION

Ewe Ram Wether Cryptorchid
Different gender/castration status influences meat quality attributes?

- Meat from entire (ram) lambs is unsatisfactory?
OBJECTIVES

1) To determine effects of different gender or castration status on color and lipid oxidation stability of long-term chilled lamb meat.

2) To evaluate the influence of different muscle types on color stability of lamb meat during retail display.

(Kim et al. 2014)
EFFECTS OF GENDER/CASTRATION/MUSCLE TYPE ON COLOR STABILITY OF LAMB MUSCLES

Color stability: Ram > Cryptochid > Wether > Ewe

(Kim et al. 2014)
EFFECTS OF GENDER/CASTRATION/MUSCLE TYPE ON MYOGLOBIN CONTENTS OF LAMB MEAT

Color stability: ST > LD > BF > SM
EFFECTS OF GENDER/CASTRATION/MUSCLE TYPE ON MYOGLOBIN CONTENTS OF LAMB MEAT

Myoglobin contents (mg/ml)

- Ewe
- Wether
- Ram
- Cryptorchid

Myoglobin contents (mg/ml)

- LD
- SM
- BF
- ST

Myoglobin
- Dark/red
- Susceptible to oxidation

(Kim et al. 2014)
Effects of gender/castration status on lipid oxidation stability of long-term chilled loin during display under HiOx-MAP

![Graph showing effects of gender/castration status on lipid oxidation stability.](image)

Lipid oxidation & Discoloration (Myoglobin oxidation)

abc Means with different superscripts differ ($P < 0.05$).
SUMMARY: IMPLICATION & FURTHER STUDIES?

1. Temperature control (Carcass chilling – Storage – Display)
2. Ageing, Freezing & Thawing (Aged/Frozen meat)
3. Developing novel packaging systems
4. Enhancement
5. Antioxidant property through feeding strategy (e.g. Ryegrass/Plantain + Se/Vit-E supplementation?)
6. Animal (breed, gender/castration) & muscle differences
7. Genetically select lambs with high MRA/color stability?

PURDUE UNIVERSITY
IMPLICATIONS: FUTURE RESEARCH

- Identify fundamental inter-relationship & biochemical mechanism.
- Develop innovative methods to control variation in fresh meat quality attributes.
SUMMARY: STRATEGIES TO IMPROVE MEAT COLOR

Producer
- Animal productivity
- Genetic influence on meat quality attributes
- Feeding & growth rate effects on muscle fiber type and meat quality
- Gender/castration
- Animal welfare

Meat Processor
- Optimized carcass chilling technology
- Pre-rigor hot-boned meat processing
- Innovative chilling/freezing/thawing methods
- Novel packaging

Retailer
- Enhancement technology
- Modified atmosphere packaging & other innovative packaging methods
- Display condition

Purdue University

Meat pH

- MRA
- DMb
- MMb
- OMb

1. Oxidation
2. Reduction

Color

Flavor

Tenderness

Juiciness
ACKNOWLEDGEMENTS

• National Cattlemen’s Beef Association
• Iowa Beef Industry Council
• Purac Inc.
• Meat Industry Association, New Zealand
• Ministry of Science and Innovation, New Zealand
• AgResearch CoreFund, New Zealand

Colleagues & Mentors
Thanks To Our Sponsor

Sealed Air
Re-imagine

CRYOVAC Diversey