Heat Stress in Pigs- What are the Effects on Muscle Metabolism and Pork Quality?

SHANNON CRUZEN, PH.D., IOWA STATE UNIVERSITY

68th RECIPROCAL MEAT CONFEREN

What is Heat Stress?

What is Heat Stress?

Introduction

 Heat stress costs livestock industry more than \$2 billion annually

- Swine industry \$300 million
- Subcutaneous adipose tissue
- Lack of functional sweat glands
- Reduced efficiency
- Slowed growth
- Increased morbidity/mortality
- Decreased carcass value

St. Pierre et al., 2003. J Dairy Sci. 86, E52-E57 Baumgard & Rhoads, 2013. Annu Rev Anim Biosci. 1, 311-377 Effects on Production

Finishing can take 1-4 weeks longer!
 Barrows kept at 32° C (~90° F) from 14 wk of age until slaughter at ~110kg

Effects on Production

- Pigs heat stressed (32 °C) for 5 weeks starting at 14wk of age

Item	TN (n = 24)	HS (n = 24)	SEM ²	Finishing
Wk 0				
Loin eye area, cm ²	29.2	28.7	0.7	0.63
Back fat depth, cm	1.20	1.21	0.04	0.87
Wk 5				
Loin eye area, cm ²	46.5	40.1	0.9	< 0.0001
Back fat depth, cm	1.82	1.53	0.07	<0.0001
		Cruze	n et al.	2015. J An
68 TH	RECIPROCAL	MEAT CONFER	RENCE	

Chronic Heat Stress and

Carcass Composition

- Pigs heat stressed (32 °C) for for 7-10 wk until slaughter wt

	Finishing Effects				
	TN	HS	SEM ²	Finishing	
Item	(n = 24)	(n = 24)			
Lean tissue, kg	25.9	28.1	0.3	< 0.0001	
Lean tissue, % side	61.4	67.1	0.8	< 0.0001	
Separable fat, kg Separable fat, % side	5.7	4.5	0.3	0.008	
	14.9	9.7	0.9	0.0002	
Bone, kg	4.88	5.08	0.08	0.11	
Bone, % side Skin, kg Skin, % side Back fat, cm Loin eye area, cm ²	11.60	12.13	0.19	0.08	
	3.11	2.86	0.08	0.08	
	7.39	6.84	0.19	0.10	Cruzen et al. 2015
	2.48	2.17	0.11	0.06	Anim Sci. 93, 258
	47.6	49.7	1.5	0.38	2506

Chronic Heat Stress and Carcass Composition - Proximates

- LD proximate analysis
- Pigs heat stressed (32 °C) for for 7-10 wk until slaughter wt

		Finishing		
	TN	HS	SEM ²	Finishing
Item	(n = 24)	(n = 24)		
Moisture, %	73.19	73.98	0.16	0.003
Protein, %	23.42	23.19	0.12	0.17
Lipid, %	1.85	1.65	0.23	0.48
		Cru	zen et al. 2	2015. J Anim

Effects on Pork Quality Summer vs Winter– Brazil No difference in pH at 45 min or 24 hr Summer pork (LD and semimembranosus) had greater light reflectance (P < 0.0001) Summer carcasses had less bruising Constant Heat Stress - 30°C, 3 weeks – LD Lighter (45 min and 24 hr) vs thermal neutral Lower 24 hr (P = 0.02), but not 48 hr pH (P = 0.08) vs thermal neutral Increased 48 hr drip loss and shear force (P < 0.01) Greater malondialdehyde content (P < 0.01)

Vang et al. 2014. Asian Australas J Anim Sci. 27, 1763-1772

Fat Quality

Flimsy Fat issues – Fat is softer, leading to problems
 Especially Bellies

- Current work by Seibert et al. to determine cause of flimsy fat in HS pigs (data presented at Midwest ASAS meeting this year)
- ~114 kg pigs 21 d of treatment (8 pigs/trt)
- TNAL: Thermoneutral ad libitum
- TNPF: Thermoneutral pair-fed
- HSAL: Heat stress ad libitum

RMC

Adipose Tissue Moisture Content

Adipocyte Size

Sterculic Oil

Adipose Tissue Fatty Acid Composition

HS does not affect overall FA composition

Fat Quality

- It is POSSIBLE that "flimsy fat" in heat stressed pigs is primarily due to reduced nutrient intake

- Increased moisture content
- No difference in fatty acid profile
- No difference in adipocyte size

- Dietary strategies are a potential solution to harden fat in heat stressed pigs

Cellular/Protein Level and ACUTE Heat Stress

Objective: To identify the effects of acute heat stress on the skeletal muscle protein profile in gilts

Methods – Experiment 1

- 32 crossbred gilts
- Heat Stress: 37 °C, 40% humidity
- •0, 2, 4, or 6 hr
- Red and white semitendinosus collected, frozen in liquid nitrogen, and stored at -80 °C until analysis of sarcoplasmic extracts

613

613

68[™] RECI

Methods – Experiment 2

- 24 crossbred gilts
- Heat Stress: 37 °C, 40% humidity
- Thermal Neutral: 20 °C, 40% humidity
- Pair-Fed Thermal Neutral: 20 °C, 40% humidity
- Euthanized at 12 hr
- Red and white semitendinosus collected, frozen in liquid nitrogen, and stored at -80 °C until analysis of sarcoplasmic extracts

RMC		RMC

Materials and Methods

- DIGE used to compare sarcoplasmic extracts
- 2-Dimensional Difference In Gel Electrophoresis
- $^{\circ}$ Method of comparing two 2D samples against a reference in the same gel

Determine the identity of significant spots

• (P < 0.10) via mass spectrometry

(**1**)

RMC

Results

Structural Proteins

- Heat Shock Proteins
 Metabolic Enzymes
 Antioxidant Enzymes
 Hsp70
 - Grp75
 - Hsp27/Beta 1
 - Hsp20/Beta 6
 - Hsp 60

Heat Shock Proteins

Increase in heat shock protein activity • Chaperones which repair/prevent damage • Refolding • Stabilization / Prevention of aggregation • Promotion of degradation • Heat/Oxidation/Etc • Heat/Oxidation/Etc • Heat/Oxidation/Etc • Stress + HSPs • Forteasome

Heat Shock Proteins – Implications for Meat Quality

 Active heat shock proteins may protect the myofibril

- Downregulated gene expression of Hsp27 and α-B Crystallin associated with beef tenderness
- Increased abundance of Hsp70 associated with tough beef
- $\,$ a-B Crystallin protects bovine desmin and titin from degradation by calpain-1

Bernard et al. J Ag Food Chem. 2007;55:5229-37 Jia et al. J Anim Sci. 2009;87:2391-9 Lomiwes et al. Meat Sci. 2014;97:548-57

- UDP-Glucose Pyrophosphorylase

- Glycogenesis

UGP2 – Enzyme in

Glycogenesis

Results

Results

Heat Shock Proteins

Metabolic Enzymes

Antioxidant Enzymes

Structural Proteins

Heat Shock Proteins

- Metabolic Enzymes
- Antioxidant Enzymes
- Structural Proteins

- Fiber Type Dependent

- RST more affected than WST
- RST also had increases in TCA cycle components

Metabolism

More glycolytic metabolism w/ heat stress

- Greater lactate production, pyruvate kinase activity in muscle from chronically heat stressed broilers (Zhang et al., 2012)
- Heat stress increases insulin sensitivity in rodents and basal insulin concentrations in several species (Rhoads et al., 2013)
- Changes in gene expression due to heat stress in rats are muscle specific (Sanders et al. 2009)

Zhang et al., 2012. Poultry Sci. 91:2931-2937 Rhoads et al., 2013. J Anim Sci. 91:2492-2503 Sanders et al., 2009. FASEB J. 23:598.7

Metabolism – Implications for Meat Quality

- Increased glycolytic capacity does not bode well!
- UGP2 indicates acute heat stress would reduce glycogen production, whereas longer term stress could increase it
- May be compensation for reduced nutrient intake COMBINED with increased glycolysis
- PSE concerns
- RATE of pH decline

- Heat Shock Proteins
- Metabolic Enzymes
- Structural Proteins
- Antioxidant Enzymes Increased MnSOD & Peroxiredoxin 6
 - Decreased Peroxiredoxin 1&2

Antioxidant Proteins -Implications for Meat Quality

- There is clearly an oxidative response to Heat Stress
- Increase of some antioxidant proteins is a benefit
- But loss of others is a concern

Results

- Heat Shock Proteins
- Metabolic Enzymes
- Antioxidant Enzymes
- Structural Proteins
- Alterations in microtubules and microfilaments

Tubulin

Microtubule Response to Heat Stress

•Tubulin from *Artemia* embryos heated to 35°C for 8 hours assembles poorly (Day et al., 2003)

 Hyperthermic treatment (45°C, 30 min) of CHO AA8 cells results in complete collapse of microfilaments/ microtubules (Grzanka et al. 2008)

Actin

 Any actin in the sarcoplasmic fraction should be soluble G-actin

- Cofilin (unphosphorylated form) responsible for disassembly of actin filaments
- Phosphorylated cofilin → less actin disassembly → greater cytoskeletal stability

Cytoskeletal Structure

- Microtubules are negatively affected by heat stress
- Conditions are more favorable for microfilament (actin) assembly
- Function to preserve cytoskeletal structure?

68™ RECIPROC

RMC

Cytoskeletal Structure – Implications for Meat Quality

Tenderness?

- More stable actin
- Less stable tubulin
- Water Holding Capacity
- IF there is PSE already, might less stable cytoskeletal structure contribute to water loss?

- What can be done to reduce the effects or prevent heat stress?
- Diet
- Lairage
- Transport strategiesProduction strategies

RMC

6/25/2015

